Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(25): eadf4068, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352351

RESUMEN

The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.


Asunto(s)
Animales Domésticos , Conducta Animal , Domesticación , Mutación Missense , Ribonucleósido Difosfato Reductasa , Animales , Ratones , Animales Domésticos/genética , Cabras/genética , Ribonucleósido Difosfato Reductasa/genética , Selección Genética
2.
Genes (Basel) ; 13(7)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35886034

RESUMEN

The selection and evaluation of high-quality embryos are the key factors affecting in vitro embryo development and pregnancy outcome. The timing of first embryonic cleavage has been considered a positive indicator of the in vitro developmental potential of embryos, while the underlying molecular mechanism is still not fully understood. In this study, the embryos generated by parthenogenetic activation (PA) or in vitro fertilization (IVF) were monitored and recorded every 2 h and divided into two groups (early cleavage or late cleavage) based on the cleavage rate and blastocyst formation data. RNA sequencing was used to analyze the gene expression pattern of the embryos. We identified 667 and 71 different expression genes (DEGs) in early cleavage and late cleavage porcine PA and IVF embryos, respectively. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs are mainly enriched in pathways concerning the proteasome, DNA repair, cell cycle arrest, autophagy, and apoptosis, suggesting that severe endoplasmic reticulum stress (ERS) and DNA damage may be the key factors that led to the low development potential of late cleavage embryos. This study provides a theoretical basis for the following application and offers important information about the understanding of the timely manner of porcine embryo development.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Animales , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Femenino , Fertilización In Vitro , Partenogénesis/genética , Embarazo , RNA-Seq , Porcinos/genética
3.
Front Physiol ; 13: 873831, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812329

RESUMEN

Hirudo nipponia is the only blood-sucking leech included in Chinese Pharmacopoeia having distinct features of anticoagulation, exorcizing blood stasis, and promoting menstruation. Despite such significant characteristics, very little is known about its molecular genetics and related physiological mechanisms. In this study, the transcriptomes of H. nipponia at three developmental stages (larvae, young, and adults), revealed a total of 1,348 differentially expressed genes (DEGs), 223 differentially expressed lncRNAs, and 88 novel mRNAs. A significant diverse gene expression patterns were observed at different developmental stages which were analyzed by differential gene expression trends, and the overall gene expression trends consist of three overall down-regulated trends, and two overall up-regulated trends. Furthermore, the GO and KEGG enrichment functional annotation analysis revealed that these DEGs were mainly associated with protein hydrolysis, signal transduction, energy metabolism, and lipid metabolism while growth, development, metabolism, and reproduction-related DEGs were also found. Additionally, real-time quantitative PCR results confirmed deep sequencing results based on the relative expression levels of nine randomly selected genes. This is the first transcriptome-based comprehensive study of H. irudo nipponia at different developmental stages which provided considerable deep understanding related to gene expression patterns and their relevant developmental pathways, neurodevelopmental and reproductive characteristics of the leech.

4.
Front Physiol ; 13: 897458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694407

RESUMEN

Medical leeches are widely been used in biochemical and clinical medical studies, helping to restore blood circulation to grafted or severely injured tissue. Mostly, adult leeches are being used in the traditional pharmacopeia, but the gene expression profiling of leeches in different growth periods is not well-reported. So, in this study, we used transcriptome analysis to analyze the comparative gene expression patterns of Hirudinaria manillensis (H. manillensis) in different growth periods, including larval, young, and adult stages. We constructed 24 cDNA libraries from H. manillensis larval, young, and adult stages, and about 54,639,118 sequences were generated, 18,106 mRNA transcripts of which 958 novel mRNAs and 491 lncRNAs were also assembled as well. Furthermore, the results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially upregulated genes from the larval to adult stages were enriched in pathways such as cilium, myofibril, contractile fiber, cytoskeleton proteins, dilated cardiomyopathy, adrenergic signaling in cardiomyocytes, etc. Moreover, in the adult stages, a significant increase in the expression of the Hirudin-HM (HIRM2) genes was detected. In addition, our comparative transcriptome profiling data from different growth stages of H. manillensis also identified a large number of DEGs and DElncRNAs which were tentatively found to be associated with the growth of H. manillensis; as it grew, the muscle-related gene expression increased, while the lipid metabolism and need for stimulation and nutrition-related genes decreased. Similarly, the higher expression of HIRM2 might attribute to the high expression of protein disulfide isomerase gene family (PDI) family genes in adulthood, which provides an important clue that why adult leeches rather than young leeches are widely used in clinical therapeutics and traditional Chinese medicine.

5.
Foods ; 11(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159531

RESUMEN

The physiological and biochemical characters of muscles derived from pasture-fed or barn-fed black goats were detected, and RNA-seq was performed to reveal the underlying molecular mechanisms to identify how the pasture feeding affected the nutrition and flavor of the meat. We found that the branched chain amino acids, unsaturated fatty acids, and zinc in the muscle of pasture-fed goats were significantly higher than those in the barn-fed group, while the heavy metal elements, cholesterol, and low-density lipoprotein cholesterol were significantly lower. RNA-seq results showed that 1761 genes and 147 lncRNA transcripts were significantly differentially expressed between the pasture-fed and barn-fed group. Further analysis found that the differentially expressed genes were mainly enriched in the myogenesis and Glycerophospholipid metabolism pathway. A functional analysis of the lncRNA transcripts further highlighted the difference in fatty acid metabolism between the two feeding models. Our study provides novel insights into the gene regulation and network organization of muscles and could be potentially used for improving the quality of mutton.

6.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37039117

RESUMEN

BACKGROUND: Leeches have been used in traditional Chinese medicine since prehistoric times to treat a spectrum of ailments, but very little is known about their physiological, genetic, and evolutionary characteristics. FINDINGS: We sequenced and assembled chromosome-level genomes of 3 leech species (bloodsucking Hirudo nipponia and Hirudinaria manillensis and nonbloodsucking Whitmania pigra). The dynamic population histories and genome-wide expression patterns of the 2 bloodsucking leech species were found to be similar. A combined analysis of the genomic and transcriptional data revealed that the bloodsucking leeches have a presumably enhanced auditory sense for prey location in relatively deep fresh water. The copy number of genes related to anticoagulation, analgesia, and anti-inflammation increased in the bloodsucking leeches, and their gene expressions responded dynamically to the bloodsucking process. Furthermore, the expanded FBN1 gene family may help in rapid body swelling of leeches after bloodsucking, and the expanded GLB3 gene family may be associated with long-term storage of prey blood in a leech's body. CONCLUSIONS: The high-quality reference genomes and comprehensive datasets obtained in this study may facilitate innovations in the artificial culture and strain optimization of leeches.


Asunto(s)
Genoma , Sanguijuelas , Animales , Secuencia de Bases , Sanguijuelas/genética , Evolución Biológica
7.
Genes (Basel) ; 12(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681034

RESUMEN

Donkeys are an important domesticated animal, providing labor, meat, milk, and medicinal materials for humans. However, the donkey population is continuously declining and even at risk of extinction. The application of modern animal production technology, such as oocyte in vitro maturation, is a promising method to improve the donkey population. In this study, we explore the gene expression patterns of donkey germinal vesicle (GV) and in vitro matured metaphase II (MII) oocytes using single cell RNA-seq of the candidate genes along with the regulatory mechanisms that affect donkey oocyte maturation. We identified a total of 24,164 oocyte genes of which 9073 were significant differentially expressed in the GV and MII oocytes. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these genes were associated with the meiotic cell cycle, mitochondrion activity, and N-glycan biosynthesis, which might be the key genes and regulatory mechanisms affecting the maturation of donkey oocytes. Our study provides considerable understanding regarding the maturation of donkey oocytes and serves as a theoretical basis for improving the development of donkey oocytes, which could ultimately benefit the expansion of the donkey population and conservation of biodiversity and genetic resources.


Asunto(s)
Equidae/genética , Técnicas de Maduración In Vitro de los Oocitos , Oogénesis/genética , Análisis de la Célula Individual , Animales , Equidae/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...